Skip to main content

Properties of determinants

Determinant of a matrix AA is equal to the determinant of its transpose matrix

  • Transpose Matrix: detA=detATdetA = det A^T
  • Triangular Matrix: Equal to the product of the diagonal elements
  • Row(Column) swap: If two rows (columns) are swapped the determinant of the matrix AsA_s is detA-detA
  • Null determinant: if two rows(columns) are identical(sum) then detA=0detA=0
    • If and only if the rows(columns) are linearly dependent
    • if and only if at least one row(column) is a linear combination of the other rows(columns)
    • if a row(column) is proportional to another row(column)
  • Invariant Determinant: Row(column) the elements of another row(column) all multiplied by the same scalar are added, the determinant remains the same
  • Row(column) multiplied by a scalar: Row(column) is multiplied by λ\lambda then λdetA\lambda detA
  • Matrix multiplied by a scalar: If λ\lambda is scalar, det(λA)=λndetAdet(\lambda A) = \lambda ^n detA
  • Determinant of the product: Product between two matrices is equal to the products of the determinants. det(AB)=det(A)det(B)=det(B)det(A)=det(BA)det(AB) = det(A)det(B) = det(B)det(A) = det(BA)

Adjugate Matrices

Submatrix

Obtained from AA by cancelling mrm-r rows and nsn-s columns. Where r,s 2 positive integers such that 1rm1\le r \le m and 1sn1\le s\le n

  • Rows dont have to be continuous
  • A=(331024125111)A=\begin{pmatrix} 3&3&1&0\\ 2&4&1&2\\ 5&1&1&1\\ \end{pmatrix}
  • Can be obtained by cancelling the second row, second and fourth column
  • (3151)\begin{pmatrix} 3&1\\ 5&1 \\ \end{pmatrix}

  • Minor: Determinant of submatrix
  • Major: If submatrix is the largest square
  • Complement submatrices: Obtained by cancelling on the ithi^{th} row and the jthj^{th} column from AA to the element ai,ja_{i,j}
  • Complement Minor: Determinant, indicated Mi,jM_{i,j}
  • Cofactors: Ai,j=(1)i+jMi,jA_{i,j} = (-1)^{i+j}M_{i,j}

Adjugate Matrix

A=(a1,1a1,2...a1,na2,1a2,2...a2,n............an,1an,2...an,n)A=\begin{pmatrix} a_{1,1}&a_1,_2&...&a_1,_n \\ a_2,_1&a_2,_2&...&a_2,_n \\ ...&...&...&...\\ a_n,_1&a_n,_2&...&a_n,_n \\ \end{pmatrix}

Let Ai,jA_{i,j} be the cofactor for ai,ja_{i,j}. The adjugate matrix (adjunct or adjoin) AA is: adj(A)=(A1,1A2,1...An,1A1,2a2,2...An,2............A1,nA2,n...An,n)adj(A)=\begin{pmatrix} A_1,_1&A_2,_1&...&A_n,_1 \\ A_1,_2&a_2,_2&...&A_n,_2 \\ ...&...&...&...\\ A_{1,n}&A_{2,n}&...&A_{n,n}\\ \end{pmatrix}

Dan Terms: Transpose it (Flip i,j around), then calculate the determinate of the remaining rows once removed it(the sub matrix, as would do normally). Then alternate between 1 and -1.(Use cofactors formula!. (1)i+j(-1)^{i+j})

Tutorial Def:

  1. AA
  2. ATA^T
  3. All Compliment miners
  4. Multiple by coefficent = adjudigate matrix
  5. A1=1detA×adj(A)A^{-1} = \frac{1}{detA}\times adj(A)

Laplace Theorems

Theorem 1

Determinant of AA can be computed as the sum of each row(column) multiplied by the corresponding cofactor detA=j=1nai,jAi,jdet A = \sum ^n _{j=1} a_{i,j} A_{i,j} for any arbitrary ii detA=i=1nai,jAi,jdet A = \sum ^n _{i=1} a_{i,j} A_{i,j} for any arbitrary jj

The determinant of a one-element matrix is just the element (det(a=a))(det(a = a)), can compute the determinant of any square number

Theorem 2

Sum of the elements of a row(column) multiplied by the corresponding cofactor related to another row(column) is always zero j=1nai,jAk,j=0\sum ^n _{j=1} a_{i,j} A_{k,j}=0 for any arbitrary kik\ne i i=1nai,jAi,k=0\sum ^n _{i=1} a_{i,j} A_{i,k}=0 for any arbitrary kjk\ne j

minors are the row you remove, so you take sub matrix of the remaining part. kk = minor

Introduction to Matrix inversion

Inverting a matrix

For a square matrix, AA, the inverse is A1A^{-1} which is define as the matrix for which AA1=IAA^{-1}=I

  • Invertible Matrices: \exists a matrix BRn,nAB=I=BAB \in \R _{n,n} | AB=I=BA
  • Unique Inverse !\exists! a matrix BRn,nAB=I=BAB \in \R _{n,n} | AB=I=BA
  • Inverse matrix A1A^{-1}: A1=1detAadj(A)A^{-1} = \frac{1}{detA} adj(A)
  • Singular/Non Invertable/ Linear Dependent: det(A)=0det(A) =0
  • Non-singular: det(A)0det(A)\ne 0
  • Inverse of a matrix product: (AB)1=B1A1(AB)^{-1}=B^{-1}A^{-1}